

# Analysing a two span slab using Structural Toolkit

#### In this tutorial:

- Slab Member Analysis using Structural Toolkit Analysis
- Slab Member Moment Capacity check using Structural Toolkit
- Slab Member Deflection check using Structural Toolkit
- Slab Member Comparison using RAPT (Reinforced And Post-Tensioned Concrete design software)

This will be a two span continuous slab (4.9m in the left span and 4.2m in the right span) with office type loading

#### Step 1 – Slab Member Analysis using Structural Toolkit Analysis

Using Structural Toolkit Analysis we will determine the positive and negative moments using pattern loads.

We will determine the maximum positive moment from the live load in the larger left span, and maximum negative moment with live loads in each adjacent span.

#### To start, create a new Analysis in Structural Toolkit Analysis.

Select the predefined pattern loadcase combinations.

| 🖊 Model | Message                                                                                       | × |
|---------|-----------------------------------------------------------------------------------------------|---|
| <b></b> | Select combination set:<br>1.35 DL*g, 1.2 DL*g + 1.5 LL1, 1.2 DL*g + 1.5 LL2, 1.2 DL*g + 1. ▼ |   |
|         | OK Cancel                                                                                     |   |

Figure 1 – Loadcase Combinations

Rename the document name to something sensible. (Remember to save the project also).

| S Docum | ent Message                                     | × |
|---------|-------------------------------------------------|---|
| 1       | Enter the new document name for 'Analysis A01': |   |
|         | Slab Analysis SL1                               |   |
|         | OK Cancel                                       |   |

Figure 2 – Analysis Name

#### Enter the frame geometry

Type Ctrl-D and then hit the "0" key to bring up the input coordinate dialog.







Figure 3 – Node Input Diaglog

Press enter to create the node, the type "@4.9" to create the next node relative to the first node.



Figure 4 – Node Input Dialog (after first node)

Repeat for the next span being 4.2m.

Right click and assign a **Pinned** restraint to the left end.

|              | Select               | ۲ |   |                  |   |   |           |
|--------------|----------------------|---|---|------------------|---|---|-----------|
| $\mathbb{T}$ | Filter               | ۲ |   |                  |   |   |           |
| 뭄            | Groups               | ٠ |   |                  |   |   |           |
|              | Selection (1N,0R,0M) | • |   |                  |   |   |           |
| Θ            | Node Selection       | ► | 7 | Assign Restraint | • | - | None      |
|              | Drag Node            |   | ŧ | Add Node Load    | × |   | Pinned    |
|              | Rename Object        |   |   | Clear Node Loads |   |   | Fixed     |
| æ            | Add Annotation       |   | _ |                  |   |   | Pinned2D  |
| 5            | Regenerate All       |   |   |                  |   |   | RollerX   |
|              |                      | _ |   |                  |   |   | RollerX2D |





Anthony Furr Software ABN 74 992 513 430



Assign restraints to the other two nodes using the RollerX2D. Remember to provide a pin for one support, and rollers for the others (this is not essential for a linear analysis that is horizontal, but good practise.)



Figure 6 – Beam geometry

## Create the section

Enter the gross section shapes for each span. In this example we will use a 170mm thick section (x 1m strip).

First Rename the section for good practise.

Figure 7 – Rename Section Dialog

Change the **Material** to **CONCN32** (predefined value of Concrete with 32MPa strength) and change the **Input** to **Shape**.

| Nections (1)                             | _ |
|------------------------------------------|---|
| ID: Slab 🗸 📝 💽 🗖 🥖 💿 🔂 🛅                 |   |
| Properties                               |   |
| Material: CONCN32                        |   |
| Input: Shape 💌 📝 🗌 Used by Haunch        |   |
| Library: Concrete 👻 Select               |   |
| Figure 8 – Section Properties (Material) |   |

Select the Rect shape for the Profile and assign a shape of:

D = 170mm Bf = 1000mm





| <mark>∕ L</mark> Sect | ion Properti                     | es                   |                                               | × |  |  |  |  |  |  |  |
|-----------------------|----------------------------------|----------------------|-----------------------------------------------|---|--|--|--|--|--|--|--|
| ID: S                 | lab                              | ~ 📝 I                | 3 <b>5</b> 🕫 🕡 💿 🖪                            |   |  |  |  |  |  |  |  |
| Proper                | ties                             |                      |                                               |   |  |  |  |  |  |  |  |
| Materi                | Material: CONCN32 V 📝 leff/lg: 1 |                      |                                               |   |  |  |  |  |  |  |  |
| Input:                | Input: Shape V 📝 Used by Haunch  |                      |                                               |   |  |  |  |  |  |  |  |
| Librar                | y: Steel                         | $\sim$               | Select 🔺                                      |   |  |  |  |  |  |  |  |
|                       | ] Flip XX                        | ] Flip YY            | ] Flip XY                                     |   |  |  |  |  |  |  |  |
| Name                  | :                                |                      |                                               |   |  |  |  |  |  |  |  |
| Desc:                 |                                  |                      |                                               |   |  |  |  |  |  |  |  |
| Values                | : (Calculated                    | by shape)            |                                               |   |  |  |  |  |  |  |  |
| Profile               | e: Rect                          | ~                    |                                               |   |  |  |  |  |  |  |  |
| D.                    | 170.0                            | L                    | Df. [1000]                                    |   |  |  |  |  |  |  |  |
| <i>D</i> .            | 170.0                            | ]                    |                                               |   |  |  |  |  |  |  |  |
|                       |                                  |                      |                                               |   |  |  |  |  |  |  |  |
|                       |                                  |                      |                                               |   |  |  |  |  |  |  |  |
| Values                | : Shape                          |                      |                                               |   |  |  |  |  |  |  |  |
| A:                    | 170000                           | mm²                  | qθ: 0.000 °                                   |   |  |  |  |  |  |  |  |
| bc:                   | 409.4                            | x10 <sup>6</sup> mm⁴ | ly: 14166.7 x10 <sup>6</sup> mm <sup>4</sup>  |   |  |  |  |  |  |  |  |
| J:                    | 23396556.4                       | x10³mm⁴              | lw: 0.0 x10 <sup>9</sup> mm <sup>6</sup>      |   |  |  |  |  |  |  |  |
| Zxt:                  | 4816.7                           | x10³mm³              | Zyr: 28333.3 x10 <sup>3</sup> mm <sup>3</sup> |   |  |  |  |  |  |  |  |
| Zxb:                  | 4816.7                           | x10³mm³              | Zyl: 28333.3 x10 <sup>3</sup> mm <sup>3</sup> |   |  |  |  |  |  |  |  |
| xcl:                  | 500.0                            | mm                   | yct: 85.0 mm                                  |   |  |  |  |  |  |  |  |
| Fyf:                  | 320.0                            | MPa                  | Fyw 320.0 MPa                                 |   |  |  |  |  |  |  |  |
|                       |                                  |                      |                                               |   |  |  |  |  |  |  |  |
|                       |                                  |                      |                                               |   |  |  |  |  |  |  |  |

Figure 9 – Section Properties (Profile)

You may also want to open the **Material** properties and change the **Concrete Density** to 2500kg/m<sup>3</sup> and open the **Cases** (Loadcases) and change within the **DL** case **Gravity** to **-10**m/s<sup>2</sup> (to have the results align with RAPT outputs for this example).



Anthony Furr Software ABN 74 992 513 430



| <mark>∕</mark> Sect | tion Properti   | es                               |        |            |                     | ×          |              |        |        |             |       |
|---------------------|-----------------|----------------------------------|--------|------------|---------------------|------------|--------------|--------|--------|-------------|-------|
| ID: S               | lab             | · 📝 🗄                            |        | 90         | <b>d</b>            |            |              |        |        |             |       |
| Proper              | ties            |                                  |        |            |                     |            |              |        |        |             |       |
| Mater               | ial: CONCN      | 32 ~                             | 2      | leff/lg: 1 |                     |            |              |        |        |             |       |
| Input:              | Shape           | ~                                | 7      | Used b     | y Haur 🖊            | Materia    | I Properties |        |        |             | ×     |
| Librar              | y: Steel        | $\sim$                           |        | Selec      | t                   | ID: CON    | CN32 ~       |        | • •    | 900         |       |
|                     | ] Flip XX       | ] Flip YY                        | Flip X | Y          |                     | Properties |              |        |        |             |       |
| Name                | c               |                                  |        |            |                     | E:         | 30406        | MPa    | G:     | 12669       | MPa   |
| Desc:               |                 |                                  |        |            |                     | Density:   | 2500         | kg/m³  | Creep: | 3.333333333 |       |
| Values              | : (Calculated I | by shape)                        |        |            |                     | Poisson:   | 0.2          |        |        |             |       |
| Profile             | e: Rect         | ~                                | 2      |            |                     | Thermal:   | 1E-05        | L/L/°C | Fu:    | 32.0        | MPa   |
| D:                  | 170.0           | ] mm                             | Bf:    | 1000.0     | ] <b>mm</b>         | Desc:      | 32MPa Conc   | rete   |        |             |       |
|                     |                 |                                  |        |            |                     | Render     |              |        |        |             |       |
|                     |                 |                                  |        |            |                     | Group:     | Concrete     |        | $\sim$ |             | _     |
| Values              | : Shape         |                                  |        |            |                     |            | Concrete ind |        |        |             | 1.2   |
| A:                  | 170000          | mm²                              | qθ:    | 0.000      | •                   |            | Concrete.jpg |        |        | 1.4.4.4.4   | 100   |
| bx:                 | 409.4           | x10 <sup>6</sup> mm⁴             | ly:    | 14166.7    | x10 <sup>6</sup> n  | Scale:     | 1            |        |        | ALC: NO.    |       |
| J:                  | 23396556.4      | x10³mm⁴                          | lw:    | 0.0        | x10 <sup>9</sup> n  |            |              |        | Ass    | sian        | Close |
| Zxt:                | 4816.7          | x10 <sup>3</sup> mm <sup>3</sup> | Zyr:   | 28333.3    | x10 <sup>3</sup> n  |            |              |        | 1.00   |             |       |
| Zxb:                | 4816.7          | x10 <sup>3</sup> mm <sup>3</sup> | Zyl:   | 28333.3    | x10 <sup>3</sup> mm | 3          |              |        |        |             |       |
| xcl:                | 500.0           | mm                               | yct:   | 85.0       | mm                  |            |              |        |        |             |       |
| Fyf:                | 320.0           | MPa                              | Fyw    | 320.0      | MPa                 |            |              |        |        |             |       |
|                     | Sł              | nape Editor                      | A      | ssign      | Close               |            |              |        |        |             |       |

Figure 10 – Material Properties Dialog





| Loadcases X                              |
|------------------------------------------|
| ID: DL 🗸 🗸 📝 💽 🗖 🚺 📴 🗐                   |
| Load Type                                |
| Type: Dead Incl. Swt 🗸                   |
| Gravity:                                 |
| X: 0.000 Y: 10 Z: 0.000 m/s <sup>2</sup> |
| Default  Applied to Case                 |
| Description                              |
| Desc: Dead Load Case                     |
| Loads                                    |
| NPLs: V                                  |
| MPLs: V                                  |
| MUDLs: V                                 |
| Close                                    |

Figure 11 – Loadcases Dialog

## Define the loads

Use the Load Definitions (below the Loads button) to define the loads.

```
Add a superimposed dead load of WsdI = -0.5kN, and a live load of WII = -(3.0 + 1.0)kN = -4.0kN
```

When applying these load definitions to members, this load can be either a point loads (kN), or a start or end distributed load (kN/m).



Anthony Furr Software ABN 74 992 513 430



| 🖊 Load Defi  | nitions (0) |    |       |       | ×     |
|--------------|-------------|----|-------|-------|-------|
| ID: Wsdl     | •           |    | ] 🗖 💆 | 3 🕕 🗟 |       |
| - Load Value | s           |    |       |       |       |
| FX:          | 0.00        | kN | MX:   | 0.00  | kNm   |
| FY:          | -0.5        | kN | MY:   | 0.00  | kNm   |
| FZ:          | 0.00        | kN | MZ:   | 0.00  | kNm   |
|              |             |    |       |       |       |
| Description  |             |    |       |       |       |
| Desc:        |             |    |       |       |       |
|              |             | (  |       |       |       |
|              |             | l  | Apply |       | llose |
|              |             |    |       |       | ***   |

Figure 12 – Load Definitions Dialog

Change to the **DL\*g** case in the Case selector in the ribbon to assign the **Wsdl**.

| Restraints                       | 📥 🔯 Cases:    | DL *g 🗸 🗸 |
|----------------------------------|---------------|-----------|
| 🗆 🗌 Prima                        | ary           |           |
| 🗸 D                              | L*g           |           |
| LL                               | .1            |           |
| L                                | 2             |           |
|                                  | SWt *g (Auto) |           |
|                                  |               |           |
|                                  |               |           |
|                                  |               |           |
| <ul> <li>✓</li> <li>✓</li> </ul> |               | Close     |

Figure 13 - Loadcases

NOTE: the "\*g" is automatically added to cases where the gravity is applied.

Assign the load by first selecting the members, then **right click > Member Selection > Add Member UDL** and select the **WsdI** from the defined loads.

NOTE: If there are more than 10 loads defined, this right-click feature will not be available and you will need to define loads in the **Loads dialog**.



Anthony Furr Software ABN 74 992 513 430





Figure 14 – Assign Member UDL

NOTE: Remember to hit the Esc key between selections to cancel the previous selection set.

Change the Case to LL1 and assign the live load WII to the first span (M1).

Change the Case to LL2 and assign the live load WII to the second span (M2).

Check that all loads are correctly applied by toggling through the Cases selector.

## Analyse

Press F5 to perform a linear analysis.

You may get a message regarding creep. This simply reminds you that the concrete long term deflections will not be calculated and the deflections are gross uncracked.





| Λ | Model N    | Nes | sage         |               |        |        |         |          |          |          | × |
|---|------------|-----|--------------|---------------|--------|--------|---------|----------|----------|----------|---|
|   | Frame Wa   | ami | ngs          |               |        |        |         |          |          | <u>^</u> |   |
|   | The follow | ing | warnings hav | ve been ident | ified: |        |         |          |          |          |   |
|   | Warning    | : ; | Material     | CONCN32,      | Creep  | not    | applied | (Creep=3 | .33)     |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              |               |        |        |         |          |          |          |   |
|   |            |     |              | E             | Copy t | o clip | board   |          | Continue | Abort    |   |
|   |            |     |              |               |        |        |         |          |          |          |   |

Figure 15 – Creep Warning Dialog

Press F6 to show the Bending Moment diagram (this shows automatically on first analysis).



Figure 16 - Bending Moment Analysis

M\*+ = 30.81kNm (first span) M\*- = 23.85kNm (at central support)



Anthony Furr Software ABN 74 992 513 430 97 Mt Pleasant Road Nunawading, Victoria 3131 **P** 03 9878 4684 **F** 03 9878 4685 www.structuraltoolkit.com.au support@structuraltoolkit.com.au



### Step 2 – Slab Member Moment Capacity check using Structural Toolkit

Now we have our maximum positive and negative design moments, we can use the **Structural Toolkit Concrete Member** to check the flexural capacity.

Create a new **Concrete Member** within **Structural Toolkit** and enter the Depth (170mm), concrete strength (32MPa) and web width of "S" type representing a slab.



Figure 17 - Concrete Geometry Inputs

Press the [Analysis] button in the side Notes section and create a linked analysis.

First, for the larger span enter a span of 4900mm, and the loads Wsdl = 0.5kN/m and the Wll = 4.0kN/m. Self weight is automatically calculated based on the thickness entered in the Design module.

Set the span type as "O" other to manually input the end moments and in the right side **M2**\*, enter the negative value at the central support. From the analysis, this is **-24.7kNm** corresponding to the greater sag case of **+23.9kNm**.





| ts Anthony Furr Software |                           |                  |                    | Pro<br>Ado               | dress of Proj<br>Architect | ect<br>ject              | Page:<br>Project No.: 15-0001<br>Designed: TF<br>Concrete Member CB( |                                  |               |  |
|--------------------------|---------------------------|------------------|--------------------|--------------------------|----------------------------|--------------------------|----------------------------------------------------------------------|----------------------------------|---------------|--|
| ALYSIS V5.0              | 00                        |                  |                    |                          |                            |                          |                                                                      | Anthon                           | y Furr Softv  |  |
| ometry for (Co           | oncrete Memb              | er CB01): bean   | n with end mon     | nents                    |                            |                          |                                                                      |                                  |               |  |
|                          | Description =             | 170mm thk sla    | ıb                 |                          |                            | (x =                     | 409.4                                                                | x10 <sup>6</sup> mm <sup>4</sup> |               |  |
|                          | Span (L) =                | 4900             | mm                 |                          |                            | Ag =                     | 170000                                                               | mm²                              |               |  |
|                          | Span type =               | 0                | (S)imple, (E)xte   | rior, (I)nterior,        |                            | Density =                | 25.0                                                                 | kN/m³ (Conci                     | rete)         |  |
|                          |                           | (C)antilever, (F | )ropped, (F)ixed   | d, (O)ther               |                            | E =                      | 30024                                                                | MPa                              |               |  |
| ding                     |                           |                  |                    |                          |                            |                          |                                                                      |                                  |               |  |
|                          |                           | Uni              | form loads (kN/    | ′m)                      |                            |                          |                                                                      | Point loads (kl                  | N)            |  |
| I                        | Uniform loads             | UDL              | Partial 1          | Partial 2                |                            | Point loads              | PL 1                                                                 | PL 2                             | PL 3          |  |
| Dea                      | d load (wdl) =            | 0.50             |                    |                          | D                          | ead load (pdl) =         |                                                                      |                                  |               |  |
| Li                       | ve load (wll) =           | 4.00             |                    |                          |                            | Live load (pll) =        |                                                                      |                                  |               |  |
| Start fro                | m LHS (mm) =              | 0                |                    |                          | Pos. fi                    | rom LHS (mm) =           | 0.00                                                                 | 0.00                             | 0.00          |  |
| End fro                  | m LHS (mm) =              | 4900             | kN/m               |                          | Ultir                      | nate load (p*) =         | 0.00                                                                 | 0.00                             | 0.00          |  |
| l Iltima                 | = ) w.c<br>= (*w) beal at | 4.25             | 0.00               | 0.00                     |                            | Include S W/+ -          | v                                                                    | (V)es (N)o                       |               |  |
| onina                    | (e 1080 (W-) =            | 11.70            | 0.00               | 0.00                     |                            | menude 5.wt =            |                                                                      | 11/63/14/0                       |               |  |
| Liv                      | /e Load type =            | Floor            | (Concrete)         | 1.00                     |                            | oft and (M18)            | 0.0                                                                  | khim                             |               |  |
| Short te                 | erm LL (Ψsu) =            | 0.70             | (Ψsp) =            | 1.00                     | L<br>Di                    | eft end $(M1^{\circ}) =$ | -24.7                                                                | kNm                              |               |  |
| Long to                  | ualii (Ψiu) =             | 0.40             | (ΨIp) =<br>(ΨIa) = | 0.40                     | n.i                        | gitt end (iviz ') =      | -24.7                                                                | KINITI                           |               |  |
| ults at midsp            | an                        | 0.70             | (+10) -            | 0.40                     | Positio                    | on of result (x) =       | 2450                                                                 | mm                               |               |  |
|                          |                           |                  |                    | 1                        | .20*G+1.50                 | *Q analysed - 1.35       | 5*G case to b                                                        | e checked                        | _             |  |
|                          | Left                      | At x             | Right              | Max                      | At                         | Min                      | At                                                                   | Units                            |               |  |
| Rdl                      | 9.59                      |                  | 13.68              |                          |                            |                          |                                                                      | kN                               |               |  |
| RII                      | 8.08                      |                  | 11.52              |                          |                            |                          |                                                                      | kN                               |               |  |
| R*                       | 23.62                     |                  | 33.71              |                          |                            |                          |                                                                      | kN                               |               |  |
| M*                       | 0.00                      | 22.76            | -24.70             | 23.85                    | 2015                       | -24.70                   | 4900                                                                 | kNm                              |               |  |
| V*                       | 23.62                     | -5.04            | -33.71             | 33.71                    | 4900                       |                          |                                                                      | kN                               | Span ,        |  |
| δdl                      | 0.00                      | 1.68             | 0.00               | 1.68                     | 2450                       | 0.00                     | 0                                                                    | mm                               | 2923          |  |
| 5.000                    | 0.00                      | 1.41             | 0.00               | 1.41                     | 2450                       | 0.00                     | 0                                                                    | mm                               | 3471          |  |
| oai+Ψs*öll               | 0.00                      | 2.66             | 0.00               | 2.66<br>δPII/δTot.II = ( | 2450                       | 0.00                     | 0                                                                    | mm                               | 1839          |  |
| phs                      |                           | * Deflections a  | ire Gross Ig imm   | nediate - assess         | ment of long               | ; term effects to b      | e considered                                                         |                                  |               |  |
| -30.0                    |                           |                  |                    | Bending (                | kNm)                       |                          |                                                                      |                                  |               |  |
| -20.0                    |                           |                  |                    |                          |                            |                          |                                                                      |                                  |               |  |
| -10.0                    | 500                       | 1000             | 1500               | 2000                     | 2500                       | 3000 38                  | 00 4                                                                 | 1000                             | 800           |  |
| 0.0                      |                           |                  |                    |                          |                            |                          |                                                                      | -9.6                             | ++++          |  |
| 10.0 00                  |                           |                  |                    |                          |                            |                          | 4.7                                                                  |                                  |               |  |
| 20.0                     | 10,2                      | 17.5             |                    |                          | ╺╪╼┿╾┿╸                    | 12.2                     |                                                                      | + $+$ $+$ $+$ $+$                | + $+$ $+$ $+$ |  |
| 30.0                     |                           |                  | 221                | فالمووا                  | 2.4                        | 10.5                     |                                                                      |                                  |               |  |

Press the [Switch to Design...] button in the side Notes area to return to the Concrete Member design module.

Press the [Max M+\*] to begin designing the section for the positive moment and enter bar sizes of 12mm and at centres of 250mm (N12-250) as the bottom reinforcement with 20mm bottom cover, and bar sizes of 12mm at centres of 300mm (N12-300) as the top steel, again with 20mm cover.





|                     | 0                                                                                                                                                                                                                                              | Pro                                                                                                                                                                                                         | posed Proj                                                                                              | ect                                                                                                                                                                                                                        |                                                                                                                               | Page:                                                                                                                     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| ate                 | -                                                                                                                                                                                                                                              | Ado                                                                                                                                                                                                         | lress of Pro                                                                                            | ject                                                                                                                                                                                                                       |                                                                                                                               | Project No.: 15-0001                                                                                                      |
| ars                 | Anthony Furr Software                                                                                                                                                                                                                          |                                                                                                                                                                                                             | Architect                                                                                               |                                                                                                                                                                                                                            |                                                                                                                               | Designed: TF                                                                                                              |
|                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            | Cor                                                                                                                           | ncrete Member CB                                                                                                          |
| CONCRETE M          | IEMBER V5.00                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               | Anthony Furr Softw                                                                                                        |
| ection:             | (Concrete Member CB01) 170m                                                                                                                                                                                                                    | n thk slab, f'c=32MPa                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
| leinf't:            | N12-300 cts top, N12-250 cts bo                                                                                                                                                                                                                | ttom, ku = 0.07                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
| trength:            | (+ve M) M* = 23.9kNm < øMuo                                                                                                                                                                                                                    | = 24.8kNm (øMuo.min = 1                                                                                                                                                                                     | 5.3kNm)                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                               | OK (0.96)                                                                                                                 |
|                     | Ast.req'd = 426mm <sup>2</sup> (N12-260)                                                                                                                                                                                                       |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
| racking:            | fscr = 252MPa < Fscr = 297MPa                                                                                                                                                                                                                  | & fscr1 = 292MPa < Fscr1 =                                                                                                                                                                                  | 400MPa                                                                                                  |                                                                                                                                                                                                                            |                                                                                                                               | OK (0.73,0.85)                                                                                                            |
| st.min:             | Ast.min = 272mm² < Ast = 452m                                                                                                                                                                                                                  | m² (Minimum of Deemed a                                                                                                                                                                                     | nd actual)                                                                                              |                                                                                                                                                                                                                            |                                                                                                                               | OK (0.60)                                                                                                                 |
| ieometry            | S.Wt =                                                                                                                                                                                                                                         | 4.25 kN/m                                                                                                                                                                                                   |                                                                                                         |                                                                                                                                                                                                                            | L/D ratio =                                                                                                                   | 28.8                                                                                                                      |
|                     | Concrete strength (f'c) =                                                                                                                                                                                                                      | 32 MPa                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     | consistent strength (i of                                                                                                                                                                                                                      | 0 111 0                                                                                                                                                                                                     |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     | Depth (D) =                                                                                                                                                                                                                                    | 170 mm                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     | Web width (W) =                                                                                                                                                                                                                                | S mm, (S)lab                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               | Comp.                                                                                                                     |
|                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               | Tension                                                                                                                   |
|                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     | Slab type =                                                                                                                                                                                                                                    | 0 (O)ne way, Two                                                                                                                                                                                            | way & (C)ol                                                                                             | s, (T)wo way & v                                                                                                                                                                                                           | alls, (F)ooting                                                                                                               | t.                                                                                                                        |
|                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                         | Formwork =                                                                                                                                                                                                                 | S                                                                                                                             | (S)tandard,(R)igid                                                                                                        |
|                     | Concrete weight =                                                                                                                                                                                                                              | 25.0 kN/m³                                                                                                                                                                                                  |                                                                                                         | Exposure Top =                                                                                                                                                                                                             | A1                                                                                                                            | Tab 4.10.3.2                                                                                                              |
|                     | Fully enclosed =                                                                                                                                                                                                                               | N (Y)es,(N)o                                                                                                                                                                                                |                                                                                                         | Bottom =                                                                                                                                                                                                                   | A1                                                                                                                            | Tab 4.10.3.2                                                                                                              |
|                     | Gross area (Ag) =                                                                                                                                                                                                                              | 170000 mm <sup>2</sup>                                                                                                                                                                                      |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
| nalysis: beam       | with end moments at 2015mm fr                                                                                                                                                                                                                  | om LHS (Max +ve M)                                                                                                                                                                                          |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                           |
|                     | Analysis values =                                                                                                                                                                                                                              | X (M)anual, (L)eft                                                                                                                                                                                          | Position (X                                                                                             | ) from analysis, (                                                                                                                                                                                                         | R)ight                                                                                                                        |                                                                                                                           |
|                     | Analysis values =                                                                                                                                                                                                                              | X (M)anual, (L)eft                                                                                                                                                                                          | , Position (X                                                                                           | ) from analysis, (                                                                                                                                                                                                         | R)ight                                                                                                                        |                                                                                                                           |
|                     | Analysis values =<br>Refer to the analysis out                                                                                                                                                                                                 | X (M)anual, (L)eft                                                                                                                                                                                          | Position (X                                                                                             | ) from analysis, (<br>Max+                                                                                                                                                                                                 | R)ight<br>Right                                                                                                               | Units                                                                                                                     |
|                     | Analysis values =<br>Refer to the analysis out                                                                                                                                                                                                 | X (M)anual, (L)eft<br>put<br>M*                                                                                                                                                                             | Position (X<br>Left<br>0.0                                                                              | ) from analysis, (<br>Max+<br>23.9                                                                                                                                                                                         | R)ight<br>Right<br>-24.7                                                                                                      | Units<br>kNm                                                                                                              |
|                     | Analysis values =<br>Refer to the analysis out                                                                                                                                                                                                 | X (M)anual, (L)eft<br>put<br>Ms1*                                                                                                                                                                           | Position (X)<br>Left<br>0.0<br>0.0                                                                      | ) from analysis, (<br>Max+<br>23.9<br>17.8                                                                                                                                                                                 | R)ight<br>Right<br>-24.7<br>-18.5                                                                                             | Units<br>kNm<br>kNm                                                                                                       |
|                     | Analysis values =<br>Refer to the analysis out                                                                                                                                                                                                 | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*                                                                                                                                                              | Position (X)                                                                                            | ) from analysis, (<br>Max+<br>23.9<br>17.8<br>15.4<br>426                                                                                                                                                                  | R)ight<br>-24.7<br>-18.5<br>-15.9                                                                                             | Units<br>kNm<br>kNm<br>kNm                                                                                                |
|                     | Analysis values =<br>Refer to the analysis out                                                                                                                                                                                                 | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req d                                                                                                                                                 | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>0                                                           | ) from analysis, (<br>Max+<br>23.9<br>17.8<br>15.4<br>426                                                                                                                                                                  | R)ight<br>-24.7<br>-18.5<br>-15.9<br>442<br>237                                                                               | Units<br>kNm<br>kNm<br>mm²/m                                                                                              |
|                     | Analysis values =                                                                                                                                                                                                                              | X (M)anual, (L)eft<br>put<br>M*<br>Ms*<br>Ast req d<br>Ast req d<br>Point sec id                                                                                                                            | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>0<br>452                                                    | ) from analysis, (<br><u>Max+</u><br>23.9<br>17.8<br>15.4<br>426<br>452<br>N13.360                                                                                                                                         | Rjight<br>-24.7<br>-18.5<br>-15.9<br>442<br>377                                                                               | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m                                                                                     |
|                     | Analysis values =<br>Refer to the analysis out                                                                                                                                                                                                 | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd                                                                                                                         | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>0<br>452<br>-                                               | ) from analysis, (                                                                                                                                                                                                         | R)ight<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250                                                                    | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m                                                                                     |
| einforcement        | Analysis values =                                                                                                                                                                                                                              | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd                                                                                                                         | Position (X<br><u>Left</u><br>0.0<br>0.0<br>0.0<br>452<br>-                                             | ) from analysis, (                                                                                                                                                                                                         | R)ight<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250                                                                    | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m                                                                                     |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = <u>N1</u>                                                                                                                                                                     | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts                                                                                                            | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>452<br>-                                                    | ) from analysis, (<br><u>Max+</u><br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br><b>Top steel =</b>                                                                                                                   | R)ight<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts                                                     | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m                                                                                     |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =                                                                                                                                                              | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm Mesn                                                                                              | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>452<br>-                                                    | ) from analysis, (<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =                                                                                                                           | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12                                      | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m                                                                                     |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =<br>Bar cts/No/mm <sup>2</sup> =                                                                                                                              | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm Mesn.                                                                                             | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>452<br>-<br>Ba                                              | ) from analysis, (<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =<br>r cts/No/mm <sup>2</sup> =                                                                                             | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12<br>300                               | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m                                                                                     |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =<br>Bar cts/No/mm <sup>2</sup> =<br>Yield strength (fsy) =                                                                                                    | X (M)anual, (L)eft<br>put<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm Mesh<br>500 MPa                                                                                   | Position (X<br>Left<br>0.0<br>0.0<br>0<br>452<br>-<br>Ba<br>Yield s                                     | ) from analysis, {<br>Max+<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =<br>r cts/No/mm <sup>2</sup> =<br>strength (fsyc) =                                                                | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12<br>300<br>500                        | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m<br>mm<br>Mesn ◄                                                                     |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =<br>Bar cts/No/mm <sup>2</sup> =<br>Yield strength (fsy) =<br>Bottom cover to steel =                                                                         | X (M)anual, (L)eft<br>mut<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm<br>2500 ▼m<br>500 MPa<br>20 mm                                                                    | Position (X<br>Left<br>0.0<br>0.0<br>0<br>452<br>-<br>Ba<br>Yield s<br>Top                              | ) from analysis, {<br>Max+<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =<br>r cts/No/mm <sup>2</sup> =<br>trength (fsyc) =<br>cover to steel =                                             | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12<br>300<br>500<br>20                  | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m<br>mm<br>Mean (4)<br>MPa<br>mm                                                      |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =<br>Bar cts/No/mm <sup>2</sup> =<br>Yield strength (fsy) =<br>Bottom cover to steel =<br>Steel area (Ast) =                                                   | X (M)anual, (L)eft<br>put<br>M <sup>*</sup><br>Ms1 <sup>*</sup><br>Ms <sup>*</sup><br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm Mesh.<br>250 ▼m<br>500 MPa<br>20 mm<br>452 mm <sup>2</sup> /m | Position (X<br>Left<br>0.0<br>0.0<br>0<br>452<br>-<br>Ba<br>Yield s<br>Top<br>St                        | ) from analysis, {<br>Max+<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =<br>r cts/No/mm <sup>2</sup> =<br>itrength (fsyc) =<br>cover to steel =<br>teel area (Asc) =                       | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12<br>300<br>500<br>20<br>377           | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m<br>mm<br>Mean 4<br>mm<br>MPa<br>mm<br>mm²/m                                         |
| einforcement        | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =<br>Bar cts/No/mm <sup>2</sup> =<br>Yield strength (fsy) =<br>Bottom cover to steel =<br>Steel area (Ast) =<br>Ductility class =                              | X (M)anual, (L)eft<br>mut<br>M <sup>*</sup><br>Ms1 <sup>*</sup><br>Ms <sup>*</sup><br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm<br>Mesh<br>500 MPa<br>20 mm<br>452 mm²/m<br>A (N)ormal,(L)ow, | Position (X<br>Left<br>0.0<br>0.0<br>0<br>452<br>-<br>Ba<br>Yield s<br>Top<br>St<br>(A)uto              | ) from analysis, (<br>Max+<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =<br>r cts/No/mm <sup>2</sup> =<br>itrength (fsyc) =<br>cover to steel =<br>iteel area (Asc) =<br>Ductility class = | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12<br>300<br>500<br>20<br>377<br>A      | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m<br>mm<br>MPa<br>mm<br>MPa<br>mm<br>mm²/m<br>(N)ormal,(L)ow,(A)uto                   |
| <u>einforcement</u> | Analysis values =<br>Refer to the analysis out<br>Bottom steel = N1<br>Bar size =<br>Bar cts/No/mm <sup>2</sup> =<br>Yield strength (fsy) =<br>Bottom cover to steel =<br>Steel area (Ast) =<br>Ductility class =<br>Reinf't ductility class = | X (M)anual, (L)eft<br>M*<br>Ms1*<br>Ms*<br>Ast req'd<br>Ast<br>Reinf't req'd<br>2-250 cts<br>12 mm Mesh<br>250 m<br>500 MPa<br>20 mm<br>452 mm²/m<br>A (N)ormal,(L)ow,<br>N (N)ormal,(L)ow                  | Position (X<br>Left<br>0.0<br>0.0<br>0.0<br>452<br>-<br>Ba<br>Yield s<br>Top<br>St<br>(A)uto<br>Reinf't | ) from analysis, (<br>Max+<br>23.9<br>17.8<br>15.4<br>426<br>452<br>N12-260<br>Top steel =<br>Bar size =<br>r cts/No/mm <sup>2</sup> =<br>itrength (fsyc) =<br>cover to steel =<br>ieeel area (Asc) =<br>Ductility class = | R)ight<br>Right<br>-24.7<br>-18.5<br>-15.9<br>442<br>377<br>N12-250<br>N12-300 cts<br>12<br>300<br>500<br>20<br>377<br>A<br>N | Units<br>kNm<br>kNm<br>mm²/m<br>mm²/m<br>mm<br>MPa<br>mm<br>MPa<br>mm<br>mm²/m<br>(N)ormal,(L)ow,(A)uto<br>(N)ormal,(L)ow |

The summary at the top indicates that the section capacity is **OK** for the positive moment case.

For the negative bending, we can not simply transfer the moment, because the pattern load we have input into the Analysis module was for the maximum deflection and sage case. So we need change the **Analysis values** to "M" manual method and enter the –ve moment of  $M^* = -30.8$ kNm.





The Essential Design Tool For Australian Structural Engineers

| CONCRETE      | MEMBER V5.00                     |                          |                      |                |                   |                 | Furr Consulting Pty Ltd |
|---------------|----------------------------------|--------------------------|----------------------|----------------|-------------------|-----------------|-------------------------|
| Section:      | (Concrete Member (801) 17        | 0mm thk slab.            | f'c=32MDa            |                |                   |                 |                         |
| Reinf't:      | N12-200 cts top. N12-400 ct      | s hottom, ku =           | 0.09                 |                |                   |                 |                         |
| Strength:     | $(-ve M) M^* = 30.8kNm < dN$     | 1uo = 31.0kNm            | («Muo min = 16       | (AkNm)         |                   |                 | OK (0.99)               |
| Strengtin     | $Ast reg/d = 556 mm^2 (N12-20)$  | 100 - 51.0000            | (pivido.iiiii - 10   |                |                   |                 | 01 (0.55)               |
| Cracking      | for = 264MDa + Ecc = 297M        | 10)<br>102 8. feer1 - 20 | MADa + Eccel -       | 400MD>         |                   |                 | 04 (0.76 0.89)          |
| Actimin       | $Act min = 272 mm^2 < Act = 570$ | Factisci = 50            | wm of Doomod r       | 400 WiFa       |                   |                 | OK (0.78,0.85)          |
| Ast.min:      | Astimin - 272mm- < Ast - 5       | minim) -mmce             | um or Deemed a       | ind actual)    |                   |                 | OK (0.48)               |
| Geometry      | S.Wt =                           | 4.25                     | kN/m                 |                |                   | L/D ratio =     | 47.1                    |
|               | Concrete strength (f'c) =        | 32                       | MPa                  | _              |                   |                 |                         |
|               | Span (L) =                       | 8000                     | mm                   |                |                   |                 |                         |
|               | Depth (D) =                      | 170                      | mm                   |                |                   |                 |                         |
|               | Web width (W) =                  | 5                        | mm (S)lab            |                |                   |                 |                         |
|               | tres triatin (tr) =              | J                        | mm, (o)nuo           |                |                   |                 | Comp                    |
|               |                                  |                          |                      |                |                   |                 | Tension                 |
|               |                                  |                          |                      |                |                   |                 | Tension                 |
|               | Slah tune -                      | 0                        | (O)ne way Two        | way & (Clok    | (T)wo way & w     | valle (E)opting |                         |
|               | Siab type =                      | 0                        | (Office way, 1wo     | way a (c/oi:   | Eormwork -        | ans, (P)ooting  | (S)tandard (B)igid      |
|               | Concrete weight -                | 25.0                     | kN/m <sup>3</sup>    |                | Exposure Top =    | ۵1<br>۵1        | Tab 4 10 3 2            |
|               | Eully enclosed =                 | 23.0<br>N                | (V)es (N)e           |                | Bottom -          | A1              | Tab 4.10.3.2            |
|               | Gross area (Ag) =                | 170000                   | (T/es,(N/O           |                | Bottom =          | ~               | 140 4.10.3.2            |
| Decign action | Gross area (Ag) =                | 170000                   | mm                   |                |                   |                 |                         |
| Design action | 3                                |                          |                      |                |                   |                 |                         |
|               | Analysis values -                | М                        | (M)anual (L)eft      | Position (V)   | from analysis /   | P)ight          |                         |
|               | Analysis values =                | 141                      | (wi)anual, (c)erc    | , Position (A) | from analysis, (  | () BIL          |                         |
|               | Manual value                     |                          |                      | Manual         | Unite             |                 |                         |
|               | Design (M*) - 20.8               | kNm/m                    | M*                   | 20.9           | kNm               |                 |                         |
|               | Design (Ms1*) =d                 | kNm/m                    | M-18                 | -30.0          | kNes              |                 |                         |
|               | Design (Ms1) = d                 | kNm/m                    | Mc*                  | -25.1          | kNes              |                 |                         |
|               | Design (Mis-) = a                | KNM/m                    | Act roald            | -20.0          | mm <sup>2</sup>   |                 |                         |
|               |                                  |                          | Astrequ              | 550            | mm <sup>2</sup>   |                 |                         |
|               |                                  |                          | Ast<br>Deinfit regid | 205<br>N12 200 | mm-               |                 |                         |
|               | Fatimeter for Matt and Matter    | ad To be used            | Keinittregia         | N12-200        |                   |                 |                         |
| Dainfanaanaa  | Estimates for Wist and Wish us   | ed - To be verif         | ieu                  |                |                   |                 |                         |
| Kennorcemen   |                                  |                          |                      |                |                   |                 |                         |
|               | Pottom stool =                   | N12 400 ctc              |                      |                | Ton steel =       | N12 200 etc     |                         |
|               | Bottom steel -                   | 12-400 Cts               | Mesh                 | <b>4 b</b>     | Par size =        | 12-200 Cts      | mm Meth                 |
|               | Dar size =                       | 12                       |                      |                | Bar size =        | 12              |                         |
|               | Bar cts/No/mm <sup>-</sup> =     | 400                      | mm<br>MB-            | Violder        | cts/NO/mm =       | 200             | mm<br>MP-               |
|               | rield strength (tsy) =           | 500                      | IVI Pa               | Teld S         | trength (fsyc) =  | 500             | MPa                     |
|               | Bottom cover to steel =          | 20                       | mm<br>2 (            | lop            | cover to steel =  | 20              | mm                      |
|               | steel area (Asc) =               | 283                      | mm <sup>-</sup> /m   | (A)ut=         | eel area (Ast) =  | 565             | mm*/m                   |
|               | Ductility class =                | A                        | (N)ormal,(L)ow,      | (A)uto         | Ductility class = | A               | (N)ormal,(LJow,(A)uto   |
|               | Reinfit ductility class =        | N                        | (N)ormal,(L)ow       | Reinfit d      | suctility class = | N               | (Njormal,(Ljow          |
| Depth         | to bottom steel layer (ds.max) = | 144                      | mm                   | Depth to t     | op steel layer =  | 26              | mm                      |
|               | Depth to bottom steel (ds) =     | 144                      | mm                   | Dept           | h to top steel =  | 26              | mm                      |
|               | D-ds =                           | 26                       | mm                   |                | D-ds =            | 144             | mm                      |
|               | No. bars =                       | 2.5                      | No.                  | Nogethie       | No. bars =        | 5.0             | No.                     |
|               | Fig                              | uie 20 – COľ             |                      | (iveyalive l   |                   | y               |                         |

Enter the top reinforcement of 12mm bars at 200mm centres (N12-200), and the bottom reinforcement of 12mm bars at 400mm centres (N12-400) (cover as previous).

The summary at the top indicates that the section capacity is **OK** for the negative moment case.



Anthony Furr Software ABN 74 992 513 430



### Step 3 – Slab Member Deflection check using Structural Toolkit

To check the deflections, we first we need to set up the reinforcement again for this span.

Enter the N12-250 bars in the bottom and N12-200 bars in the top on the [Design] sheet.

Go to the [DefI] tab and press the [Max. Deflection] button in the Notes.

Press the **[Transfer Reinf't]** to transfer the reinforcement to the Defl tab. Note that some of the reinforcement areas do not transfer as the steel is in a compression zone which is in tension.

NOTE: If you enter the value manually in the middle span top reinforcement you will notice an error message further down advising that the top compression reinfrocement is actually in tension and should be ignored.

NOTE: Ensure you go to the **[Shrink & Creep]** tab to set the exposure and location of the slab (ie. Environment and City) which will affect the σcs which in turn affects Mcr which then alters the deflections.





|                                                                                                                                                                                                                                    |                                                                          | Pr<br>Ad                                                                                       | <b>oposed Proj</b><br>dress of Pro<br>Architect                                                         | i <b>ect</b><br>ject                                                                                                                                                             | Page:<br>Project No.: 15-0001<br>Designed: TF                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                    |                                                                          |                                                                                                |                                                                                                         | C                                                                                                                                                                                | Concrete Member CB01                                                                                                  |
| CONCRETE MEMBER V5.00                                                                                                                                                                                                              |                                                                          |                                                                                                |                                                                                                         |                                                                                                                                                                                  | Anthony Furr Software                                                                                                 |
| Section:     (Concrete Member CB01) 1       Reinf't:     N12-200 cts top, N12-250 c       Defl'n: $\delta.dl = 6.4$ mm, $\delta.ll = 1.9$ mm, ocs for Interior environmen       Deflections:     C1 8 - 2 Aeaa with and magnetized | 70mm thk slab,<br>ts bottom (Addit<br>δ.inc = 10.4mm<br>t with εcsd.b*=1 | f'c=32MPa<br>tional reo speci<br>, δtotal = 13.6n<br>000x10 <sup>-6</sup> ±30%<br>4ax +ye Def) | fied)<br>nm (span / 3<br>, ɛcs*=672x1                                                                   | 59)<br>0 <sup>-6</sup>                                                                                                                                                           | ок                                                                                                                    |
| Concerts density (s)                                                                                                                                                                                                               | at muspan (n                                                             | ha (m3 cl 2 1 2                                                                                |                                                                                                         | (1-) 1700                                                                                                                                                                        | 100 mm²                                                                                                               |
| Concrete density (p)<br>Use formi :<br>formi :<br>Deflection at<br>Position (x) :<br>Span type :                                                                                                                                   | = 2400<br>= Y<br>= 35.3<br>= X<br>= 2450<br>= O                          | kg/m² Cl 3.1.3<br>(Y)es,(N)o<br>MPa<br>(M)anual, (C)rii<br>mm<br>Mod. of ela                   | G<br>Uncr.g. ne<br>Gros<br>tical, (L)eft, P<br>Stee<br>Stee<br>St. (Ec = p <sup>1-5</sup><br>Modular ra | rross area (Ag) = 1700<br>utral axis (NA) =<br>is Stiffness (ig) = 4<br>tosition (X) from analysis, (R<br>I Modulus (Es) = 2000<br>*0.043*Vfcmi) = 300<br>tito (n = Es/Ec) = 6.6 | 000 mm²<br>85 mm from top<br>109 x10° mmª (w/o reinf't)<br>1jght<br>000 MPa Cl 3.2.2<br>024 MPa ± 20% Cl 3.1.2<br>561 |
| Deflection calculation                                                                                                                                                                                                             |                                                                          |                                                                                                |                                                                                                         |                                                                                                                                                                                  |                                                                                                                       |
| Manual (M*) :<br>Manual (Ms*) :<br>Analysis (M*) :<br>Analysis (Ms*) :                                                                                                                                                             | Left<br>                                                                 | At x<br>22.8<br>14.7                                                                           | Right<br>-24.7<br>-15.9                                                                                 | Units<br>kNm<br>kNm<br>kNm Red values<br>kNm                                                                                                                                     | manually input                                                                                                        |
| Top Steel: Ast req'd :<br>Design Ast :<br>Ast :                                                                                                                                                                                    | = 0<br>= 565<br>= 0                                                      | 0                                                                                              | 442<br>565<br>565<br>N12-200                                                                            | mm²/m<br>mm²/m<br>Short ter                                                                                                                                                      | m LL factor (ψs) = 0.7                                                                                                |
| Design Ast req u<br>Design Ast :<br>Ast :                                                                                                                                                                                          | = 452<br>= 0                                                             | 400<br>452<br>452<br>N12-250                                                                   | 0                                                                                                       | mm²/m<br>mm²/m<br>mm²/m                                                                                                                                                          | OS PCP 1 1/11 5/2 2                                                                                                   |
| Uncracked IXA                                                                                                                                                                                                                      | = 1.000                                                                  | 1.021                                                                                          | 1.027                                                                                                   | x10 <sup>6</sup> mm <sup>4</sup>                                                                                                                                                 | O2 KCP-1.1(1) Fig 2.3                                                                                                 |
| luncrk = uk*W*D3/12                                                                                                                                                                                                                | 409                                                                      | 418                                                                                            | 420                                                                                                     | x10 <sup>6</sup> mm <sup>4</sup>                                                                                                                                                 | OS RCB-1.1(1) Eq 7.2(2)                                                                                               |
| Tensile steel (Ast)<br>Depth to ds                                                                                                                                                                                                 | = 0<br>= 144                                                             | 452<br>144                                                                                     | 565<br>144                                                                                              | mm <sup>2</sup> /m<br>mm (From comp. face)                                                                                                                                       |                                                                                                                       |
| Comp. steel (Asc)                                                                                                                                                                                                                  | = 0                                                                      | 0                                                                                              | 0                                                                                                       | mm <sup>2</sup> /m<br>mm (From comp. face)                                                                                                                                       |                                                                                                                       |
| Cracked k =<br>Depth to cracked NA = k*ds<br>Use Comp. steel                                                                                                                                                                       | = 0.000<br>= 0.0                                                         | 0.185<br>26.6                                                                                  | 0.204<br>29.4                                                                                           | mm<br>mm (From top)                                                                                                                                                              | OS RCB-1.1(1) Fig 5.7                                                                                                 |
| yt :<br>Design shrinkage ecs*<br>W (slab) :<br>Tension steel ratio (pw=Ast/(ds*W))<br>Comp. steel ratio (pcw=Asc/((D-dc)*W))                                                                                                       | = 85<br>= 672<br>= 1000<br>= 0.0000<br>= 0.0000                          | 84<br>672<br>1000<br>0.0031<br>0.0000                                                          | 84<br>672<br>1000<br>0.0039<br>0.0000                                                                   | mm (From tensile fibre)<br>x10 <sup>-6</sup> ±30% Interior en<br>mm                                                                                                              | v. refer Shrinkage tab                                                                                                |
| ocs -                                                                                                                                                                                                                              | = 0.00                                                                   | 0.91                                                                                           | 1.10                                                                                                    | MPa                                                                                                                                                                              | < 0.00 MD-                                                                                                            |
| wicr = (Fct.f-dcs)*1g/γt<br>Cracked κc<br>icr=κc*W*ds <sup>3</sup> /12:<br>jef.max:                                                                                                                                                | = 0.000<br>= 0<br>= 246                                                  | 0.192<br>48<br>246                                                                             | 0.233<br>58<br>246                                                                                      | x10 <sup>6</sup> mm <sup>4</sup>                                                                                                                                                 | OS RCB-1.1(1) Fig 5.7                                                                                                 |
| lef                                                                                                                                                                                                                                | 0                                                                        | 246                                                                                            | 193                                                                                                     | x10 <sup>6</sup> mm <sup>4</sup>                                                                                                                                                 |                                                                                                                       |
| lav :<br>Patio lunoch / iau -                                                                                                                                                                                                      | = (M + R) / 2 valu                                                       | ue = 220x10 <sup>6</sup> m<br>Juncrk at positi                                                 | m⁴<br>on x                                                                                              |                                                                                                                                                                                  |                                                                                                                       |
| kcs = [2-1.2*(Asc/Ast)] ≥ 0.8                                                                                                                                                                                                      | = 2.000                                                                  | kcs at position                                                                                | x                                                                                                       |                                                                                                                                                                                  | CI 8.5.3.2                                                                                                            |
| Deflection summary - Located at midspan (N                                                                                                                                                                                         | lax +ve Def)                                                             |                                                                                                |                                                                                                         |                                                                                                                                                                                  |                                                                                                                       |
| Gr<br>G<br>Short term δ.short = [δdl.g+ψs*δl                                                                                                                                                                                       | oss δdl.g.imm =<br>ross δll.g.imm =<br>.g]*luncrk/lef =                  | 1.7<br>1.4<br>5.1                                                                              | mm<br>mm                                                                                                | Manual Va<br>Gross ठdl.g.imr<br>Gross ठll.g.imr<br>Short term ठdl.shor                                                                                                           | n = 1.26 mm<br>n = 1.47 mm<br>rt = 3.2 mm                                                                             |
| Sustained δ.sus = [δdl.g+ψl*δl<br>Long term δ.lo<br>Incremental δ.inc = δ.lo                                                                                                                                                       | l.g]*luncrk/lef =<br>ng = kcs*δ.sus =<br>ong + δll.short =               | 4.3<br>8.5<br>10.4                                                                             | mm<br>mm<br>mm                                                                                          | Short term öll.shor<br>Long term ödl.lon<br>Long term öll.lon<br>Total ödl.tota                                                                                                  | rt = 1.9 mm<br>g = 6.4 mm<br>g = 2.2 mm<br>al = 11.7 mm                                                               |
| Total δ.total = δ.<br>Deflection limits                                                                                                                                                                                            | short + δ.long =                                                         | 13.6                                                                                           | mm                                                                                                      | Span / 359                                                                                                                                                                       |                                                                                                                       |
| EDI II.                                                                                                                                                                                                                            |                                                                          |                                                                                                |                                                                                                         | SDI Har                                                                                                                                                                          | 20                                                                                                                    |
| οUL lim. = Span/ 25<br>δLL lim. = Span/ 30                                                                                                                                                                                         | ) = 20mm or<br>) = 16mm or                                               |                                                                                                | mm<br>mm                                                                                                | οDL lim. =<br>δLL lim. =                                                                                                                                                         | 20 mm<br>16 mm                                                                                                        |
| δinc lim. = Span/ 256<br>δTot. lim. = Span/ 256                                                                                                                                                                                    | 0 = 20mm or<br>0 = 20mm or                                               |                                                                                                | mm<br>mm                                                                                                | δLL inc. =<br>δTot. lim. =                                                                                                                                                       | 20 mm<br>20 mm                                                                                                        |

Figure 21 – Concrete Module, Deflections



Anthony Furr Software ABN 74 992 513 430



The Concrete Member module calculates a total deflection of 13.6mm. This compares to the RAPT output of 14mm total deflection (see Appendix A).

# END OF TUTORIAL

V5.0.1.2



Anthony Furr Software ABN 74 992 513 430 97 Mt Pleasant Road Nunawading, Victoria 3131 **P** 03 9878 4684 **F** 03 9878 4685 www.structuraltoolkit.com.au support@structuraltoolkit.com.au



# Appendix A - RAPT Comparison



Figure A1 – Rapt Frame Geometry







Figure A2 – Shear Force Diagram







Figure A3 - Deflections





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ 0 🚺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E File Edit View Tools Report Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Detailed Reinforcement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Input I Input   | of Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Image: Max         Max         Max         Section         2 legs         2 legs </td <td>egs 2 legs Shear</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | egs 2 legs Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| → Frame Graphics Locat Size Space Area Depth Width Rebar Regd Area N10 N1<br>hand mm mm mm mm mm A mm mm mm A mm A mm A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I2 N16 Comments<br>m mm A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| U Load Draphics 100 0 0 0 26 1000 No Steel Added 40 300 278.33 144 1000 3 N12 @ 406 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ☑         Warnings         136         0         0         26         1000         No Steel Added         40         300         278.33         144         1000         3 N12         @ 406         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| □ Frame Properties 317 U U U U 20 1000 No Steel Addeed 34 300 276.33 144 1000 3 N12 02 406 U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E = Load Combinations 660 0 0 2/26 1000 No Steel Added 16 174.2 321.18 144 1000 3 N12 @ 351.8 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Column Actions 1041 0 0 0 20 1000 No Steel Addeed to 175.3 355.51 144 1000 4 N12 (2037).3 0 0 0<br>■ Uter Steel Addeed to 175.3 355.61 144 1000 4 N12 (2037).0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1633 0 0 0 26 1000 No Steel Added 16 179.3 416.08 144 1000 4 N12 @ 271.6 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Graphics 2041 0 0 0 26 1000 No SteelAdded 16 180.9 426.55 144 1000 4 N12 @ 264.9 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Comparison of the second        | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benvice Service 3267 0 0 241.68 26 1000 3 N12 @ 467.6 20 213.1 278.33 144 1000 3 N12 @ 406 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ All Spans Loaded 3675 40 300 241.88 26 1000 3 N12 @ 467.6 40 300 278.33 144 1000 3 N12 @ 406 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Even Spans Loaded     3650 40 300 278.33 26 1000 3 N12 @ 406 40 300 241.68 144 1000 3 N12 @ 467.6 0 0     0 241.68 144 1000 3 N12 @ 467.6 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dod spars Loaded         Coaded         Coaded <thcoadd< th=""> <th< td=""><td>0 0 No shear steel</td></th<></thcoadd<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| e ➡ Flexural Design 4375 20 202.4 339.91 26 1000 4 N12 @ 332.4 0 0 0 144 1000 No Steel Added 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Constant 4550 16 17.2.5 442.22 26 1000 5 N12 @ 255.5 0 0 0 144 1000 No Steel Added 0 0     Constant 4764 12 1679 553.49 € 1000 5 N12 @ 255.5 0 0 0 144 1000 No Steel Added 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a preprince 4899 12 167.2 554.89 26 1000 5 N12 @ 203.6 0 0 0 144 1000 No Steel Added 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Service Design Comments:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | proement than calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Zemanent</li> <li>Source 1 - Source 1</li></ul> | or cement than calculated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Span - 1 - Reinforcement added at richt span contrafiexure point for Offset of Bending Moment Diagram for Shara - 45.46mm2     Span - 1 - Reinforcement added at richt span contrafiexure point for Offset of Bending Moment Diagram for Shara - 45.46mm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Graphics Span 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| e Deflections 100 kentorcement Stream Strea   | of Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Image: Section         Max         Section         Max         Max         2 legs         2 legs<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | egs 2 legs Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Locat Size Space Area Depth Width Rebar Read Size Space Area Depth Width Rebar Read Area N10 N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I2 N16 Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Even Spans Loaded 112 167.2 554.94 26 1000 5 N12 @ 203.6 0 0 0 144 1000 No Steel Added 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Image:                          | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and the second sec                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ☑         Detailed Feniforcement         288         16         171.4         486.04         26         1000         N12         232.5         0         0         144         1000         No Steel Added         0         0         0         1444         1000         No Steel Added         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 No shear steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Image: Detailed Reinforcement         288         16         171.4         486.04         26         1000         5 N12 @ 232.5         0         0         1 144         1000         No SteelAdded         0         0           Image: Detailed Reinforcement Layout         Image: Detailed Reinfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 No shear stee<br>0 0 No shear stee<br>0 0 No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ☑         Detailed Reinforcement         288         16         171.4         486.04         26         1000         5 N12 @ 232.5         0         0         0         144         1000         No SteelAdded         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         0         No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee                                                                                                                                                                                                                                                                                           |
| 288 16             171.4             486.04             26             1000             5N12             223.2             0             0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         0         No shear stee                                                                                                                                                                                                                                               |
| 288 16             171.4             486.04             26             1000             5N12             223.2             0             0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         0         No shear stee                                                                                                                                                                                                   |
| 288 (6)             171.4             486.04             26             1000             5N12             223.2             0             0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0         0         No shear stee                                                               |
| 288 16 171.4 486.04 26 1000 5 N12 @ 232.5 0 0 0 144 1000 No SteelAdded 0 0               0               0               0               0               0               0               0               0               0               0               0               0               0               0               0               0               0               0               0               282               0               0               0               144               1283               26               0               100               105               188               278.33               26               0               12               0                 0                 0                   0                 0                  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0         0         No shear stee                                                               |
| ■ Detailed Reinforcement Layout                  ■ Text               = Text               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12               = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0         0         No shear stee           0         0         No shear stee <td< td=""></td<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee           0         0         No shear stee <td< td=""></td<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee           0         0         No shear stee <td< td=""></td<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         0         No shear stee           0         0         No shear stee <td< td=""></td<> |
| Pateled Reinforcement Layout         288         16         171.4         486.04         26         1000         5412         223.2         0         0         144         1000         No Steel Added         0         0           Image: Second S                                                                                                                                                                                          | 0         0         No shear stee           0         0         No shear stee <td< td=""></td<> |

Figure A4 – Reinforcement Output







Figure A5 – Reinforcement Diagram

