

Rev 1, Created 15 October 2020

Concrete Sleeper Retaining Wall

A concrete sleeper retaining wall can be designed in Structural Toolkit using two modules – **Sleeper Walls** & **Concrete Member Design**. The following guide will show the step-by-step process of doing this.

Using Sleeper Walls

The first step of designing a concrete sleeper wall is to use the Sleeper Walls module. Upon opening module, fill in the relevant geometry values as shown below. Many of these values will be based on geotechnical recommendations.

etry						
Wall assumed	fully drained					
Geometry	Retaining heig	ht must be a multiple of f	the slo	eeper vertical dimension (120	0mm)	
Retaining height (ht) =	1200	mm				
Post centres (cts) =	1200	mm				
Upright =	S	(T)imber,(S)teel,(B)oth				
Risk class =	В	(A),(B),(C) - Moderate da	amage	and loss of services - Table 1	1	
Backfill type =	1	Class(1), Class(2), (U)nco	ntroll	ed, (l)n-situ - Table 5.1(A)		
Soil paramete	rs		1	Footing - Cohe	sive	
Internal friction (ø) =	30	° (0° ≤ ø ≤ 45°)		Total footing depth (d) =	1600	mm (From surface)
Incline (β) =	0	° (0° ≤ β ≤ 45°) 1 in 0.0		lgnore top (ig) =	200	mm
Soil weight (ys) =	18.0	kN/m⁵		Footing diameter (dia) =	450	mm
Cohesion (c) =	0	kPa		Soil cohesion (cf) =	30	kPa (0 for cohensionless)
		Call babinda]	Design cf*=cf*Φuc(=0.7) =	21.0	kPa insitu material
Sleepers	Minor axis ber	iding Soli benind w	vali			
Sleeper depth (dSD) =	100	mm (Horz. dimension)		Live Load duration =	Permanent	Soll at footil
Sleeper width (dSW) =	200	mm (Vert. dimension)				
Max number of layers =	6	(1200mm high)		Long term LL factor (ΨI) =	1.00	AS 1170.0 Table 4.1
				Duration factor (k1) =	0.57	

Next is to fill in any additional design loads specific to the design and the relevant load factors, as seen below. For this design, only the minimum surcharge of 5.0kPa has been added (note for risk class A this would be 2.5kPa).

Design loads - Appendix J & Section 4 - AS4678

Min. surcharge =	5.0	kPa - Table 4.1 Add	litional upright overturnin	g	
Water height (hw) =	0.0	mm (Drained)	Thrust (Va)	= 0.00	kN
Surcharge (s) =	5.0	kPa	Overturning (Ma)	= 0.00	kNm
			Load factor	= 1.50	
Dead only factor =	1.35	(1.35)	Long term LL factor (Ψ Io)	= 0.40	
Earth factor =	1.25	(1.25)	Va*	= 0.00	kN
Live load factor =	1.50	(1.50 - 0.0 for stabilising effect) Ma*	= 0.00	kNm
Stabilising factor =	0.80	AS4678 - Appendix J2	(Thrust/mon	nent applied at t	he top of the wall

Once the geometry and design load values have been set, select the desired steel uprights using the [Select Upright] button on the right, and check the capacity section to verify it works.

Once the upright has been verified, the next step is to then design the concrete sleepers. However, before moving on to the Concrete Member Design, open the [Calculations] tab at the bottom of the Sleeper Walls module, and make note of the loads and moment for the bottom layer sleeper, as seen below. Note that if the width of the intended concrete sleeper does not match up to the spacing of the layers in the [Calculations] tab, the sleeper size in the in the Sleeper Walls module will need to be adjusted accordingly using the [Select Sleeper] button (this is purely to get the correct loading distribution).

	Layer - ha	Sleepers	Ka.s	Ka.ys.ha	Total	wdl	wll	w*	M*	øMrd	Ratio	Def dl	Def(dl+ψl.ll)	Strength	Layer - ht
	mm		kPa	kPa	kPa	kN/m	kN/m	kN/m	kNm	kNm	M*/øM	mm	mm	Ratio/Фn	mm
	0		0.00	0.00	0.00										0
1	100	1	1.75	0.63	2.38	0.13	0.35	0.68	0.12	1.73	0.07	0.1	0.4	OK (0.07)	100
	200		1.75	1.26	3.01										200
2	300	1	1.75	1.89	3.65	0.38	0.35	1.00	0.18	1.73	0.10	0.3	0.6	OK (0.10)	300
	400		1.75	2.52	4.28										400
3	500	1	1.75	3.15	4.91	0.63	0.35	1.31	0.24	1.73	0.14	0.5	0.8	OK (0.14)	500
	600		1.75	3.79	5.54										600
4	700	1	1.75	4.42	6.17	0.88	0.35	1.63	0.29	1.73	0.17	0.7	1.0	OK (0.17)	700
	800		1.75	5.05	6.80										800
5	900	1	1.75	5.68	7.43	1.14	0.35	1.95	0.35	1.73	0.20	0.9	1.2	OK (0.20)	900
	1000		1.75	6.31	8.06										1000
6	1100	1	1.75	6.94	8.69	1.39	0.35	2.26	0.41	1.73	0.24	1.1	1.4	OK (0.24)	1100
	1200		1.75	7.57	9.32					•					1200

Anthony Furr Software ABN 74 992 513 430

Using Concrete Member Design

With the loading distribution found from the Sleeper Walls module, the concrete sleeper can be designed. The first step is to input the geometry of the concrete sleeper, as shown below. Usually the concrete strength and reinforcement information is provided by the sleeper wall manufacturer.

Geometry			L/D ratio = 12.5	
Concrete strength (f'c) = Depth (D) =	40 80	MPa mm		
Web width (W) = Flange width (Bf) =	200	mm, (S)lab mm		Comp. Tension

Next the reinforcement needs to be specified. In this case, only the bottom reinforcement is needed, so the bar size of the top reinforcement is put as zero. The recommended "Bottom cover to ligs" can be found to the bottom right under "Top Steel" – refer image below. In this case, 23.0mm was used.

		Ligs = 2 legs N12-40 cts						
Bottom reinf't	= 2-N10		Top reinf't =	None				
Bar size	= 10) mm 🛛 Mesh 🔳	Bar size =	0	mm Mesh 🔺			
Bar cts/No/mm ²	= 2	No No	Bar cts/No/mm ² =	300	mm			
Yield strength (fsy)	= 500	MPa Yie	eld strength (fsyc) =	500	MPa			
Ductility class	= A	(N)ormal,(L)ow,(A)uto	Ductility class =	A	(N)ormal,(L)ow,(A)uto			
Reinf't ductility class	= N	l (N)ormal,(L)ow Rein	nf't ductility class =	N	(N)ormal,(L)ow			
Steel area (Ast)	= 157	/ mm²	Steel area (Asc) =	0	mm²			
Bottom cover to ligs	= 23	mm	Top cover to ligs =	20	mm			
Depth to bottom steel layer (ds.max)	= 40	mm Depth	to top steel layer =	32	mm			
Depth to bottom steel (ds)	= 40) mm [Depth to top steel =	32	mm			
D-ds	= 40) mm	D-ds =	48	mm			
No. bars	= 2.0) No.	No. bars =	0.0	No.			
Bar centres	= 120) mm	Bar centres =	0	mm			
Max bars per layer	= 4	ł N	1ax bars per layer =	1				
Layers required	= 1	. Max ba	ars pers 2nd layer =	0				

Refer to the [Preview] tab to check that the geometry appears correct, as shown below.

Anthony Furr Software ABN 74 992 513 430

Once the geometry and reinforcement has been set, click on the [Analysis] button to the right, which will open up a linked Analysis document. In this document, input the span and load values taken from the Sleeper Walls module (the span will be the pier spacing). In addition, set the "Live Load type" to Permanent, turn the self-weight off, and set the "Dead load factor (DLF)" to 1.25 (Refer AS4678 Clause 4.1 (a) (iii)) unless input as otherwise in the Sleeper Walls module. If done correctly, the maximum moment should equal that from the Sleeper Walls module, in this case it was 0.41kNm.

Geometry for (Concrete Memi	er CB01): Conc	rete sim	ple beam			
Description =	80mm (D) x 20	0mm (V	/) beam	Ix =	8.533333333	x10° mm4
Span (L) =	1200	mm				
Span type =	S	(S)imple	e,(E)xt,(I)nt,(C)ant,(P)rop,(F)ixed,(O)t	her Ag =	16000	mm²
Material type =	С	(T)imbe	r,(S)teel,(C)onc.,(SC)comp. steel,(O)t	her Density =	25	kN/m⁵
				E =	32724	MPa
Loading						-

	Unit	form loads (kN	l/m)
Uniform loads	UDL	Partial 1	Partial 2
Dead load (wdl) =	1.39		
Live load (wll) =	0.35		
Start from LHS (mm) =	0	-	
End from LHS (mm) =	1200		
S.Wt =	0.00	kN/m	
Ultimate load (w*) =	2.26	0.00	0.00
Live Load type =	Permanent	(Concrete)	
Short term LL (Ψsu) =	1.00	(Ψsp) =	1.00
Long term LL (ΨIu) =	1.00	(Ψlp) =	1.00
Actual LL (Ψsa) =	1.00	(ΨIa) =	1.00
at midspan (Max +ve M	1)		

C

Anthony Furr Software

ABN 74 992 513 430

_		Point loads (k	N)
Point loads	PL 1	PL 2	PL 3
Dead load (pdl) =			
Live load (pll) =			
Pos. from LHS (mm) =			
Ultimate load (p*) =	0.00	0.00	0.00
include S.Wt =	N	(Y)es,(N)o	
Strength loadcase =	C	(D)ead Only,	(C)omb.

Results at midsp	an (Max +ve N	1)			Position	of result (x) =	600	mm	
					1.25*G+1.50*	Q analysed			_
	Left	At x	Right	Max	At	Min	At	Units	
RdI	0.83		0.83					kN	
RII	0.21		0.21					kN	
R*	1.36		1.36					kN	
M*	0.00	0.41	0.00	0.41	600	0.00	0	kNm	
V*	1.36	0.00	-1.36	1.36	0			kN	Span /
δdI	0.00	0.13	0.00	0.13	600	0.00	0	mm	8929
δΙΙ	0.00	0.03	0.00	0.03	600	0.00	0	mm	35459
δdl+Ψs*δll	0.00	0.17	0.00	0.17	600	0.00	0	mm	7133

ombinations:							
	Ultimate =	1.25*G+1.50*Q					
	Dead load factor (DLF) =	1.25					
Dead	Dead load only factor (DLOF) = 1.35						
Dead	Dead load uplift factor (DLUF) = 0.90						
	Live load factor (LLF) =	1.50					
	Wind load factor (WLF) =	1.00					

With the correct loads set, switch back to the design document, and click the [Max M+*] button, which will transfer the maximum positive moment from the linked Analysis. From here check that the specific limit states are met, as seen below.

It should be noted that bars specified by manufacterers generally result in an overdesigned concrete sleeper. This may result in the ku > 0.36 (i.e. non-ductile) (refer AS3600 Clause 8.1.5). To prove that the design still works, a smaller bar size can be selected such that the capacity is reached while ku < 0.36. If the limit states are not met, readjust as with any other design.

Section:	(Concrete Member CB01) 80mm (D) x 200mm (W) beam, f'c=40MPa	
Reinf't:	2-N10 bottom, ku = 0.36	
Strength:	(+ve M) M* = 0.4kNm < øMuo = 2.3kNm	OK (0.18)
Cracking:	fscr = 57MPa < Fscr = 265MPa & fscr1 = 57MPa < Fscr1 = 400MPa, crack width = 0.1mm	OK (0.14,0.22)
Ast.min:	Ast.min = 49mm ² < Ast = 157mm ² (Minimum of Deemed and actual)	OK (0.31)
	Temperate environment with ccsd.b*=800x10 ⁻⁶ , ccs*=680x10 ⁻⁶	

Once these limit states are met, the deflection will then also need to be checked by clicking on the [Defl] tab at the bottom of the document – see below.

Info Design Preview Detailed Shear	Creep&Shrink / Secondary / BeamDefl / SlabDefl /
------------------------------------	--

On this tab ensure the [Max Deflection] and [Transfer Reinf't] buttons have been clicked. This will transfer the results and point of maximum deflection, along with the reinforcement specified in the [Design] tab earlier.

Next, check that the correct reinforcement has been transferred. As can be seen below the 2-N10 bars used earlier have been transferred. As there is only a positive sagging moment in the centre of the sleeper (simply supported), the "Ast =" only designates reinforcement to this segment ("At x"). Once checked, verify the deflection shown at the top meets the design requirements.

Section:	(Concrete Member CB01) 80mm (D) x 200mm (W) beam, f'c=40MPa							
Reinf't:	2-N10 bottom (Additional reo specified)							
Defl'n:	<u>δ.dl = 2.6mm, δ.ll = 0.3mm, δ.inc = 3.5mm, δtotal = 4.8mm (span / 248</u>) Warning						. г	
	σcs for Temperate environment with εcsd.b*=800x10 ⁻⁶ , εcs*=680x10 ⁻⁶							Max Deflection
Deflections - Cl 8.5.3 simple beam at midspan (Max +ve Def)								
	Concrete density (p) =	240	10 kg/m ⁵ Cl 3.1.3	Gross area (Ag) =		16000 mm²		Stiffness based on bef or bf:
	Use fcmi? =		Y (Y)es,(N)o Uncr.g. neutral axis (NA) =			= 40 mm from top		Use bef =
	fcmi =	43	43.5 MPa Gross Stiffness (Ig) = 9 x10 ^e mm ⁴ (w/o reir			nf't)	Note: Ag, Ig and na shown as	
Deflection at = X (M)anual, (C)ritical, (L)eft, Position (X) from analysis, (R)ight								when bf used (rather than be
	Position (x) = 600 mm Steel Modulus (Es) = 200000 MPa Cl 3.2.2							
	Span type = S 3d. of elast. (Ec = p ¹⁻³⁺ (0.024*Vfcmi+0.12)) = 32724 MPa ± 20% Cl 3.1.2				2	Position (x) for deflection:		
Modular ratio (n = Es/Ec) = 6.112								Ensure position is at maximum
Deflection calculation								_
	1	Left	At x	Right	Units			
	Manual (M*) =				kNm			Transfer Dejeft
	Manual (Ms*) =				kNm			Transfer Keinft
	Analysis (M*) =	0.0	0.4	0.0	kNm	Red values of M*/Ms* manually in	nput 📕	
	Analysis (Ms*) =	0.0	0.3	0.0	kNm			Manual values:
Top reinf	t: Ast req'd =	0	0	0	mm²			To calculate the correct lav, s
	Design Ast =	0	0	0	mm²			type in the Analysis module.
	Ast =	0	0	0	mm²			
						Short term LL factor (ψs) =	1.0	Area of steel:
Bottom reinf	t: Ast req'd =	0	24	0	mm²	Long term LL factor (ψI) =	1.0	+ve value overrides, -ve value
	Design Ast =	157	157	157	mm²			Comp.
	Ast =	0	157	0	mm²			Tension
			2.0-N10					

Note that there is a warning for **ocs** shown at the top in red. This is to alert the user to ensure the correct environment has been selected in the [Creep & Shrink] tab at the bottom – refer Clause 3.1.7.2. This variable will affect the Mcr (Cracking) value. For this document, temperate was chosen.

Anthony Furr Software ABN 74 992 513 430 97 Mount Pleasant Road Nunawading, Victoria 3131 **P** 03 9878 4684 **F** 03 9878 4685 www.structuraltoolkit.com.au support@structuraltoolkit.com.au